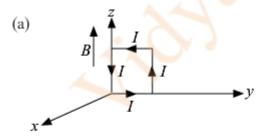
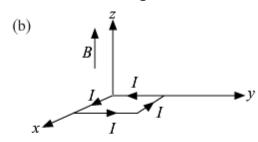
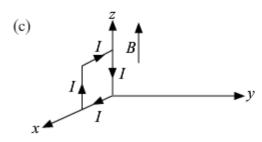
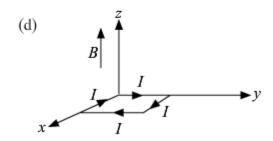
Magnetism And Matter

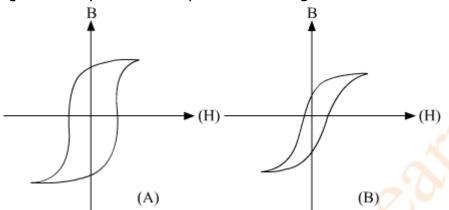

Q.No.1:


Two short bar magnets of length 1 cm each have magnetic moments 1.20 A m^2 and 1.00 A m^2 respectively. They are placed on a horizontal table parallel to each other with their N poles pointing towards the South. They have a common magnetic equator and are separated by distance of 20.0 cm. The value of the resultant horizontal magnetic induction at the mid-point O of the line joining their centres is close to (Horizontal component of earth's magnetic induction is $3.6 \times 10^{-5} \ \text{Wb/m}^2$)


JEE 2013


- **A.** $3.6 \times 10^{-5} \text{ Wb/m}^2$
- **B.** $2.56 \times 10^{-4} \text{ Wb/m}^2$
- **C.** $3.50 \times 10^{-4} \text{ Wb/m}^2$
- **D.** $5.80 \times 10^{-4} \text{ Wb/m}^2$

Q.No.2: A rectangular loop of sides 10 cm and 5 cm carrying a current I of 12 A is placed in different orientations as shown in the figures below:


If there is a uniform magnetic filed of 0.3 T in the positive z direction, in which

orientations the loop would be in (i) stable equilibrium and (ii) unstable equilibrium?

JEE 2015

- A. (a) and (b), respectively
- B. (a) and (c), respectively
- C. (b) and (d), respectively
- **D.** (b) and (c), respectively

Q.No.3: Hysteresis loops for two magnetic materials A and B are given below:

These materials are used to make magnets for electric generators, transformer core and electromagnet core. Then it is proper to use:

JEE 2016

- **A.** A for electromagnets and B for electric generators.
- **B.** A for transformers and B for electric generators.
- **C.** B for electromagnets and transformers.
- **D.** A for electric generators and transformers.

Q.No.4: At some location on earth the horizontal component of earth's magnetic field is 18×10^{-6} T. At this location, magnetic needle of length 0.12 m and pole strength 1.8 Am is suspended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is: **JEE 2019**

- **A.** $3.6 \times 10^{-5} \text{ N}$
- **B.** $1.8 \times 10^{-5} \text{ N}$
- **C.** $1.3 \times 10^{-5} \text{ N}$
- **D.** $6.5 \times 10^{-5} \text{ N}$

Q.No.5: A para-magnetic substance in the form of a cube with sides 1 cm has a magnetic dipole moment of 20×10^{-6} J/T when a magnetic intensity of 60×10^{3} A/m is applied. Its magnetic susceptibility is : **JEE 2019**

- **A.** 3.3×10^{-2}
- **B.** 4.3×10^{-2}
- **C.** 2.3×10^{-2}
- **D.** 3.3×10^{-4}

Q.No.6: A soft ferromagnetic material is placed in an external magnetic field. The magnetic domains: **JEE 2021**

- **A.** decrease in size and changes orientation.
- **B.** may increase or decrease in size and change its orientation.
- **C.** increase in size but no change in orientation.
- **D.** have no relation with external magnetic field

Q.No.7: A bar magnet of length 14 cm is placed in the magnetic meridian with its north pole pointing towards the geographic north pole. A neutral point is obtained at a distance of 18 cm from the center of the magnet. If $B_H = 0.4 \, G$, the magnetic moment of the magnet is $(1 \, G = 10^{-4} \, T)$

- **A.** $2.880 \times 102 \text{ J T}^{-1}$
- **B.** 2.880 J T⁻¹
- **C.** $2.880 \times 10^3 \text{ J T}^{-1}$
- **D.** 28.80 J T⁻¹

Q.No.8: In a uniform magnetic field, the magnetic needle has a magnetic moment 9.85×10^{-2} A/m² and moment of inertia 5×10^{-6} kg m². If it performs 10 complete oscillations in 5 seconds then the magnitude of the magnetic field is ____ mT. [Take π^2 as 9.85] **JEE 2021**

Q.No.9: Choose the correct option.

JEE 2021

- **A.** True dip is always equal to apparent dip.
- **B.** True dip is not mathematically related to apparent dip.
- **C.** True dip is less than the apparent dip.
- **D.** True dip is always greater than the apparent dip.

Q.No.10: A long solenoid with 1000 turns/m has a core material with relative permeability 500 and volume 10^3 cm^3 . If the core material is replaced by

another material having relative permeability of 750 with same volume maintaining same current of 0.75 A in the solenoid, the fractional change in the magnetic moment of the core would be approximately $\left(\frac{x}{499}\right)$.

Find the value of x. **JEE 2021**